色情网址大全

“数字+”与统计数据工程系列讲座(第116讲)12月21日伦敦布鲁内尔大学虞克明教授来色情网址大全 做讲座预告

发布者:施宇婷发布时间:2025-12-18浏览次数:10

讲座时间:202512月21日(周日)  10:00

地点: 综合楼644会议室

报告题目:Robust Loss Functions for Deep Learning, Bayesian Robust Quantile Regression, Huberised Regularisation and Robust Quantile Random Forest

报告人简介:  

虞克明英国伦敦布鲁内尔大学统计学与数据科学讲习教授(Chair Professor)数学学科研究影响中心主任英国皇家统计学会会士英国社科基金(ESRC) 评审专家成员、英国自科基金 (EPSRC)评审专家成员 、欧洲科学基金(ESF) 评审专家成员目前Journal of the Royal Statistical Society-C副主编也担任过Journal of the American Statistical Association, A&CS》、《Journal of the Royal Statistical Society-A等多家国际SCISSCI期刊的副主编目前他主要从事回归分析、非参数统计、机器学习、贝叶斯推断、大数据及非常小的数据分析等方面的理论和方法研究是贝叶斯分位数回归方法的开拓者先后在《Journal of American Statistical Association》、《Journal of the Royal Statistical Society: Series B》、《Journal of Econometrics》、《Journal of Business & Economic StatisticsBernoulli统计学顶级刊物上发表论文150多篇

报告摘要: 

In recent years, several research directions in AI and statistics have gained significant attention, particularly those concerned with robustness. These include the development of robust loss functions to handle outliers and adversarial examples in deep learning, with important applications in computer vision, network security, and natural language processing—domains in which new security challenges continue to emerge. Parallel advances in robust quantile regression and robust regularisation methods further highlight the need for principled approaches capable of withstanding data contamination and model misspecification.

This talk introduces a new loss function that provides a unified Bayesian perspective on these research themes. The proposed framework offers a coherent motivation for robust estimation objectives across prediction, learning, and regularisation, and contributes to a deeper understanding of how robustness can be systematically incorporated into quantile regression and modern machine-learning models.